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Classification of white wine aromas with an electronic nose
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Abstract

This paper reports the use of a tin dioxide multisensor array based electronic nose for recognition of 29 typical aromas in white wine.
Headspace technique has been used to extract aroma of the wine. Multivariate analysis, including principal component analysis (PCA) as well
as probabilistic neural networks (PNNs), has been used to identify the main aroma added to the wine. The results showed that in spite of the
strong influence of ethanol and other majority compounds of wine, the system could discriminate correctly the aromatic compounds added to
the wine with a minimum accuracy of 97.2%.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

.1. Biological and electronic noses

Human nose is much more complicated than other human
enses like the ear and the eye, at least regarding the mech-
nisms responsible for the primary reaction to an external
timulus. Therefore, it has been much simpler to mimic the
uditory and the visual senses. In olfaction hundreds of dif-

erent classes of biological receptors are involved. Although
everal interesting developments have been made regarding
o-called electronic noses, their performance is far from that
f our olfactory sense. They are not as sensitive as our nose to
any odorous compounds. Despite this difference, chemical

ensor arrays combined with pattern recognition methods are
ery useful in many practical applications like monotonous
asks in quality control. Electronic noses are thus emerging
s new instrumentation, which can be used to measure the
uality or identify an aroma of a product. They work in a
imilar way and have, in that aspect, a large similarity with
he human nose[1,2].

The human olfactory system is very complex, and has
recently successfully investigated and recognized with
Nobel Prize[2–4]. Each olfactory receptor cell possesses
one type of odorant receptor, and each receptor can de
limited number of odorant substances. The electronic no
an electronic system that tries to imitate the structure o
human nose. Both systems are based on non specific rec
(cells and sensors) followed by a posterior signal proces

An accepted definition of an electronic nose is: “an ins
ment which comprises an array of electronic chemical se
with partial specificity and an appropriate pattern recogn
system, capable of recognizing simple or complex odo
[5] and tries to characterise different gas mixtures[3,6,7].
It uses currently a number of individual sensors (typic
5–100) whose selectivities towards different molecules o
lap. The response from a chemical sensor is usually mea
as the change of some physical parameter, e.g. condu
or current. The response times for these devices range
seconds up to a few minutes. This is a significant draw
for these devices, and thus one of the main research t
in this field is to reduce the response time. A simple fl
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chart of the typical structure of an electronic nose is shown
in Fig. 1.

By teaching a computer (or hardware) to recognise those
patterns we have used to train the electronic nose, it should
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Fig. 1. Typical block diagram of an electronic nose.

now be able to classify the wine aroma belonging to the dif-
ferent classes of learned aromas or patterns. A very important
part of the electronic nose is thus an efficient technique for
pattern recognition. Several methods are used, some statis-
tical which determine the clusters of data representing dif-
ferent classes of odours and some based on different forms
of artificial neural networks (ANNs) for classification and
quantification of aromatic compounds and gas mixtures. The
development of efficient pattern recognition algorithms is,
therefore, one of the most important issues in the field of
electronic noses. One common method for pattern recogni-
tion is principal component analysis (PCA)[8,9]. PCA is
a powerful, linear, unsupervised and non-parametric pattern
recognition technique that has been used by many researchers
to reduce the dimensionality of the pattern space leading to a
better visualization of data clustering. If we use, for instance,
16 sensors for our measurements (one measurement can thus
be represented as a point in a 16-dimensional space), some
of them probably respond in a similar (but not identical) way.
This means that the number of dimensions in the data set
can be reduced without any loss of information. This method
consists of expressing the response vectors in terms of linear
combinations of orthogonal vectors along a new set of coordi-
nate axes, and is sometimes referred to vector decomposition
and thus helps to display multivariate data in two or three
dimensions. A loading plot of a PCA shows to what degree
t ents.
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Fig. 2. Schematic of an artificial neural network. It consists of a multilay-
ered (often three) interconnected layers of neurons. The computing neurons
(hidden and output layers) have a non-linear transfer function. The param-
eters of the neurons are chosen through a minimisation of the output error
for a given training set.

rons than standard feed-forward backpropagation networks,
but often they can be designed in a fraction of the time it
takes to train standard feed-forward networks. They work
best when many training vectors are available.

The learning in an ANN is performed by changing the
parameters in the linear combination. By feeding data from
known odours into the network, the parameters can be
adapted to recognise the sensor signals from these odours.
In order to adapt the parameters, the training data has to be
used many times. This is very similar to training of odour
recognition for humans. After being exposed to an odour only
once we seldom remember it very well, while odours we have
often experienced in youth can be recognised a long time af-
terwards. It is important to note that an ANN, just like the
human nose, cannot identify odours it has never experienced
before. When confronted with the sensor signals from a new
odour, the ANN can only say which of the known odours the
signals are most similar to, or that it does not recognise the
odour. A human can easily say if it considers an unknown
odour to be pleasant or not, while an electronic nose cannot
make any subjective judgement of that type.

2. Experimental

2.1. Electronic nose

used
f nose
he different sensors contribute to the principal compon
n this plot, sensors with similar contributions (i.e. that c
ain similar information) will be close together. Sensors
re close to the origin have comparably small variance

herefore, probably contain little information.
One of the most popular supervised methods to ha

lectronic nose data is the artificial neural network (AN
hich bears a certain resemblance to the function of th
an brain. In principle, an ANN is constituted of many

he order of 50–100) artificial neurons. The artificial neur
re organised in different layers, often three, together f

ng a network (seeFig. 2). An artificial neuron is a simp
rocessing element, which in resemblance to biological
ons uses signals from several inputs to produce one o
linear combination is taken of all the inputs, giving a sin

alue. This value is then used in a transfer function, w
ould have arbitrary shape.

An alternative for classical neural networks are Radial
is Function Networks (RBFs). They may require more
An electronic nose based on tin oxide array has been
or headspace analysis of the samples. The electronic
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Fig. 3. Measurement set-up: (1) nitrogen bottle; (2) mass flowmeter controller; (3) electrovalves; (4) Dreschell bottle with sample in a thermostatic bath; (5)
sensors cell; (6) PC; and (7) DMM with multiplexer.

used has been home-fabricated and home-developed for wine
aroma purposes[10]. The sensor array was prepared by RF
sputtering onto an alumina substrate. The array is formed
by 16 thin film sensors with thicknesses between 200 and
800 nm. Some sensors were doped with chromium and in-
dium either as surface or intermediate layer. The operation
temperature of the sensors is controlled at 250◦C with a PID
regulator. The array was placed in a 24 cm3 stainless steel cell
with a heater and a thermocouple. The carrier used gas was
99.998% purity nitrogen in order to preserve the wine. Gas
line tubes were of stainless steel covered with fused silica in
order to minimize gas adsorption in the line. The sampling
method employed was static headspace followed by a dy-
namic injection because of its sensitivity to highly or medium
volatile compounds present in wine. The way of carrier gas
and volatile compounds is selected with the control program
using two electrovalves. The main components of the mea-
surement set-up are shown inFig. 3.

The resistance of the sensors was measured with a
Keithley 2700 7 1/2 digits digital multimeter (DMM) with a
40-channels multiplexer, connected to a personal computer
using a GPIB interface. The measurement system was fully
automated and controlled with a program developed in
Testpoint®.

Responses of the individual sensors are defined respect to
the minimum resistance to 12% (v/v) of ethanol for all the
m
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The principal component analysis applies a linear trans-
formation to the data and result in a new space of variables
called principal components[11]. A probabilistic neural net-
work (PNN) was used for classification purposes. The PNN
was composed by three layers: the input one had three neu-
rons, corresponding with the three principal components; the
hidden layer, with radial basis transfer functions, had the same
number of neurons that number of training vectors and a com-
petitive layer in the output[11], leave one out (LOO) cross
validation method was applied in order to check the perfor-
mance of the network[12]. LOO consists of trainingN dis-
tinct nets (in this case,N is the number of measurements)
by usingN− 1 training vectors; while the validation of the
trained net is carried out by using the remaining vector, ex-
cluded from the training set. This procedure is repeatedN
times until all vectors are validated[13].

2.2. Wine samples and protocols

A total of 29 aromas have been analyzed. The measured
aromas are the most common ones in white wines. The chem-
ical compounds responsible of these aromas are dissolved in
the same wine at concentrations from two to eight times the
threshold concentration the humans can smell[14,15]. The
chemical compounds are responsible of typical aromas found
in white wines and correspond to several descriptors such as
f The
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hereRwine is the minimum resistance of the sensor in
easurement of wine andRcalibration is the minimum resis

ance of the sensor exposed to a solution of 12% of eth
The data collected were analyzed using a commercial

are package (Matlab 6.1) for programming the feature
raction and the pattern recognition techniques (PCA
NNs).
ruity, floral, microbiological, herbaceous and chemical.
romatic compounds measured and descriptors of the a
dded to the wine are shown inTable 1.

The base wine comes from Malvar variety and has
laborated in the “Instituto Madrileño de Investigacione
groalimentarias (IMIA)” with grapes of Madrid region. A
ompounds were of analytical quality and were provide
erck and Sigma–Aldrich. The samples are frozen at the
ent of preparation and stored at−20◦C in a freeze until th
oment of measurement. Each sample is measured du
ay. A total of 9–10 measurements per day are perfor
he sampling method was headspace, so 10 ml of sol
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Table 1
Aromatic compounds and aroma measured

Chemical compound Aroma Group

Geraniol Geranium Floral
2-Phenylethanol Rose Floral
�-Ionone Violet Floral
Linalool Rose, citric Floral
Phenyl ethyl acetate Pollen, rose Floral
Ethyl octanoate Apple Fruity
Isoamyl acetate Banana Fruity
Ethyl isobutirate Pear Fruity
Ethyl hexanoate Fruit Fruity
Hexyl acetate Pear 2 Fruity
Ethyl cinnamate Strawberry Fruity
Ethyl 2-methylbutyrate Blueberry Fruity
Ethyl isovalerate Mulberry Fruity
1-Hexanol Green grass Microbiological
Diacetyl Butter Microbiological
Isovaleric acid Cheese Microbiological
Isoamyl alcohol Soap, oil Herbaceous, Vegetative
Butyric acid Cheese 2 Microbiological
Acetoin Cream, milky Microbiological
C-3-hexen-1-ol Cut green grass Herbaceous, vegetative
Benzaldehyde Almond Herbaceous, vegetative
Acetic acid Vinegar Chemical pungent
Decanoic acid Natural soap Chemical
Sulphur dioxide Sulphur Chemical pungent
Ethyl acetate Gum Chemical pungent
Octanoic acid Rancid Chemical
Acetaldehyde Sherry Chemical oxidized
Guaiacol Wood Chemical
P-cresol Stable, horses Chemical

are kept in a 50 ml Dreschel bottle at 30◦C for 30 min in or-
der to generate a vapour phase in equilibrium with the liquid.
The electrovalves are switched and nitrogen fluxes for 20 min
carrying the aromatic compounds to the sensor cell. Then the
electrovalves are switched again to allow the sensors to des-
orb. This procedure is repeated several at least eight times
for each compound. Sensors are calibrated once a week with
a blank solution (12% (v/v) ethanol in deionised water) in
order to reduce the drift of the sensors[5]. All measurements
are carried out at a total gas flow of 200 ml/min.

3. Results and discussion

Fig. 4 shows the typical transient responses of four
chemoresistive sensors, operating at 250◦C, exposed towards
the headspace of the blank wine. The response of the sensors
corresponds to several pulses of 20 min of exposition to the
tested wine flavour followed by a pure nitrogen purge for
40 min.

A polar plot of the average signals of the sensors for the
wine samples is shown inFig. 5in terms of relative resistance
changes respect to ethanol 12%. The contour of these polar
plots differs from one aroma to another, illustrating the dis-
crimination capabilities of the array. The standard deviation
(n= 8 samples) for the 16 sensors ranged between 0.5 and
1

Fig. 4. Typical transient response of four sensors of the array.

The data obtained from sensor array, after feature ex-
traction and calibration with ethanol measurements, have
been processed by the PCA pattern recognition technique
to investigate the discrimination capability of the present
system. Nevertheless, to process uniform and homogeneous
data in the PCA study, the sensor response to the first ex-
posure of each wine flavour was eliminated. Usually the
first two components carry the most information of the old
variables.

Fig. 6 illustrates the principal components plot which
shows separate clusters for geranium, rose, violet, citric and
pollen aromas in white wine. InFig. 7 is shown the PCA
plot for apple, banana, pear, fruits, pear 2, strawberry, blue-
berry and mulberry aromas. There is some partial overlapping
between “banana” and “fruits” aromas, however, the other
classes are well separated.Fig. 8shows the PCA plot for green
grass, butter, cheese, soap, cheese 2, cream, milky, cut green
grass and almond aromas. This figure shows an overlapping
between two very similar aromas: “green grass” and “just
cutted grass”. LookingFig. 9, it can be concluded that there
isn’t overlapping in chemical aromas added to blank wine
and shows separate clusters for vinegar, natural soap, sulphur,
gum, rancid, sherry, wood and stable aromas. InFigs. 6–9,
the percentage of variance explained by each principal com-
ponent is in brackets.

A pattern classifier based on a probabilistic neural net-
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sed for validation.Table 2defines several parameters u
or measuring the classification performance: sensitivity
ectivity and accuracy.

able 2
arameters used to evaluate the performance of the network in classifi
f classi

eal Predicted

Classi Classj

lassi True positive (TP) False negative (F
lassj False positive (FP) True negative (T

ensitivity = TP/(TP + FN); selectivity = TN/(FP + TN); accuracy = (T
N)/(TP + TN + FP + FN).
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Fig. 5. Polar plot of the average signals of the sensors for wine samples grouped by families: floral, fruity, herbaceous and microbiological and chemical aromas.

Fig. 6. PCA plot of the measurements of floral aromas in white wine. Fig. 7. PCA plot of the measurements of fruity aromas in white wine.
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Table 3
Confusion matrix of the probabilistic neural network for the chemical aromatic compounds in wine

Blank wine Green soap Wood Stable Rancid Vinegar Sulphured Gum Aged

Blank wine 8 0 0 0 0 0 0 0 0
Green soap 0 8 0 0 0 0 0 0 0
Wood 0 0 8 0 0 0 0 0 0
Stable 0 0 0 8 0 0 0 0 0
Rancid 0 0 0 0 8 0 0 0 0
Vinegar 0 0 1 0 0 7 0 0 0
Sulphured 0 0 0 0 0 0 8 0 0
Gum 0 0 0 0 0 0 0 7 1
Aged 0 0 0 0 1 0 0 0 7

Table 4
Neural networks results for chemical compounds in wine

Blank wine (%) Green soap (%) Wood (%) Stable (%) Rancid (%) Vinegar (%) Sulphured (%) Gum (%) Aged (%)

Sensitivity 100 100 100 100 100 87.5 100 87.5 87.5
Selectivity 100 100 98.4 100 98.4 100 100 100 98.4
Accuracy 100 100 98.6 100 98.6 98.6 100 98.6 97.2

Fig. 8. PCA plot of the measurements of herbaceous and microbiological
aromas in white wine.

Fig. 9. PCA plot of the measurements of chemical aromas in white wine.

In floral, fruity, herbaceous and microbiological aromas,
the probabilistic neural network has obtained 100% in sensi-
tivity, selectivity and accuracy. In the case of chemical aro-
mas, the pattern classifier has confussed several aromas. The
confusion matrix for this case is shown inTable 3, and sen-
sitivity, selectivity and accuracy calculated for chemical aro-
mas inTable 4.

4. Conclusions

Discrimination of several aromatic compounds from dif-
ferent families of main aromas of white wine has been per-
formed by a semiconductor sensor array based electronic
nose.

A 100% in sensitivity, selectivity and accuracy has been
obtained with the probabilistic neural network trained for the
following aromas: floral, fruity, herbaceous and microbiolog-
ical. For chemical aromas the minimum sensitivity, selectiv-
ity and accuracy obtained has been 87.5, 98.4 and 97.2%,
respectively.

In conclusion, as wines from different areas and grape
varieties exhibit different aromatic profiles, the developed
system could be useful for the typification (identification of
origin and grape variety) of white wines.
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